U.S. DEPARTMENT OF COMMERCE - K ’
National Institute of Standards and Technology

- NISTIR 4351 :

D-A261 330
VRN El!i!&?

FEB 2 6 1993

National PDES Testbed
Report Series —

Appioved ior punlic releaset
Diutmnnunen ﬂuhnn_od

| " 93-04012
| o TOTIRERERmR

Reproduced From Nm

Best Available Copy

? 68 2 25 030

000ttt e —

US. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4351

) National PDES Testbed

NATIONAL

» » TheNIST Working
é Form for STEP
Stephen Nowland Clark

TESTBED

U.S. DEPARTMENT OF
COMMERCE
Robert A. Mosbacher, F";Q‘;‘T"T’T A
NTIS CRaa
Secretary of Commerce ONIC TAB é{
Unannourced ')
hstificaton .
. National Institute of & I
Standards and Technology | Dstribution
! Vi é!“! i
’ John W. Lyons, Director | Jvelebity Codes
| Avait 9o or
) Ot pecal .
i : | ;
November 19, 1990 -\ | :

DTIC QUALITY INEPECTED 3

NIST

Disclaimer
Standards and Technology s intended or impiied
Smallalk-80 15 a rademark of ParcPlace Systems, Ing
Sun-3 and Sun-+4 are rademarks of Sun Microsy stems, Ine

Unix s a rademark of AT&T Technologies. tne

No approval or endorsement ot any commerciad product By the Nations Lo

The NIST Working Form for STEP

Stephen Nowland Clark

1 Introduction

STEPparse, the NIST STEP physical file parser. and the associared STEP Working
Form, are Public Domain tools for manipulating product models stored in the STEP
physical file format {Altemueller88] These tools are a pant of the NIST PDES Toolka
{Clark90a], and are geared particularly toward building STEP wanslators The STHP
Working Form is an in-memory representanon for STEP product models. It rehies an
the NIST Express Working Form [Clark90b] as an in-core data dictuonary, which pro
vides a context in which STEP models can be interpreted. The Working Form code and
the STEPparse parser itself are both wniten 1o be independent of any particular schema
simply plug in some Express language information model [Schenck®0], and the vode
ready to run.

A primary goal in the development of STEPparse was to provide a clean back-end in-
terface which would allow various output modules to be easily plugged into the baug
front-end parser. To accomplish this. the parser builds up a set of data structures ithe
STEP Working Form) containing all of the information in a STEP source file It can

Working Form, extracting relevant subsets of the available data and producing an ap-

propriately formatied output file. Three STEPparse output modules are provided with
the NIST PDES Toolkit: one which produces Smalltalk-80™ objeci instantiations, one
which produces a STEP physical file (so the the Working Form can be used to transiate
to as well as from STEP), and one which loads an SQL database from the STEP Work-
ing Form [Nickerson90]. The former is used by QDES [Clark90d]. a prototype STEP
model editor written in Smalltalk-80.

1.1 Context

The PDES (Product Data Exchange using STEP) activity 1s the United States’ effortin
support of the Standard for the Exchange of Product Model Data (STEP), an emerging
international standard for the interchange of product data between vanous vendors’
CAD/CAM systems and other manufacturing-related software [Smith88]. A National
PDES Testbed has been established at the Nanonal Institute of Standards and Technol-
ogy to provide testing and validation facilities for the emerging standard. The Testbed
is funded by the CALS (Computer-aided Acquisition and Logistic Support) program of
the Office of the Secretary of Defense. As part of the testing effort. NIST 1s charged
with providing a software toolkit for manipulating PDES data. This NIST PDES Tool-
kit is an evolving, research-oriented set of software tools. This document is one of a set
of reports which describe various aspects of the Toolkit. An overview of the Toolkit 1s
provided in [Clark90a], along with references to the other documents in the set.

The NIST Working Form for STEP Page |

(¥

Stepher Now land Ulark

Implementation Environment

STEPparse and the STEP Working Form were developed on Sun Mucrosvsiems San
3™ and Sun-4 workstations runming the Unic M operating syvstern The parser o
plemented tn Yacc and Lex, the Unix tools tor generaung parsers and lowsval dnuis zers
The Working Form data structures are umplemented in ANST Swandare € UANSI
The grammuar 1or the language is processed by Bison, the Free Sotiware Foundaton
implementaton of the Yace parser generator The lexwal analyvzer s produced ™
Flex®, a fast, public domain implementaton of Lex The Ccompiler used 1s GCC 4o
a product of the Free Software Foundarnion, aithough the Working Form code does ros
specifically depend on any parucular compiler

Running STEPparse

STEPparse takes several optional command-line arguments:

P - PR
LaLrgarse 3OwnUTTer
" A e o\
LTE EREDIRSS
T - o .
g wsleps

The -4 option controls the debugging level: the argument can range from (0 (the de
fault) to 10. The Express schema file is specified with -&, 1f no - option s given, the
schema is read from standard input. The STEP input file is specified with - apan,
standard input is read if there 15 no - s opuon. Atleastone of -« or ~ 5 must be pec
ified; STEPparse cannot read both from swandard tnput.

STEPparse can be built in two different ways, resultng in differentinteraction patterns
For many applications. a single output module 1s bound into the translator at buiid time
In this statically linked case. after the STEP source file has been parsed the user is nor
mally prompted for a single file name. This 1s the name of the file to which
STEPparse’s cutput will be wntten. In the other (dynamically linked) version. no <pe-
cific output module is loaded at build time. In this case. after parsing uts input. the pro-
gram asks for an output module. If the file named is an appropnate object file. 1t s
loaded and an output file name requested. which is where the output wili be written
Another output module is then requested. and this sequence continues until the user en:
ters an empty line as the name of the output module. which signals STEPparse to exit
This dynamic loading facility is only available under BSD4.2 Unix and 1ts denvates.

1. The Free Software Foundation (FSF) of Cambndge. Massachusetts 1s responsible for the GNU Prosect.
whose ultimate goal is 10 provide a free implementation of the Unix operating system and environment.
These tools are not in the Public Domain: FSF retains ownerstup and copyright privileges. but grants free dis-
ribution nights under certain terms. At this wnung, further information is available by electromic mail on the
Internet from gnu@prep.ai.mit.edu.

2. Vern Paxson’s Fast Lex is usually distributed with GNU software, [t is, however, in the Public Domain,
and is not an FSF product. Thus, it does not come under the FSF licensing restnctions.

The NIST Working Form for STEP Page 2

Stepher Noradand Clark

4 Design Overview

The STEP Working Form (WF 1s designed in uan object-onented fashion, and 1v intend
ed to mesh cleanly with the NIST Express Working Form Indeed. the WF currents
relies on the structures of the Express Working Form as an in-memory data dictionan
This section discusses the design of the Working Form, desenbing STEPparse control
tflow as well as the data abstractions of the WF. More technical detwl can be found i

[Clark90c¢).
4.1 STEPparse Control Flow

A STEPparse translator consists of two separate passes: parsing and output generaton
The first pass builds an instantiated product model from a STEP source file This monde!
can then be traversed by an output module ‘n the second pass, producing whatever re.
port is desired.

As currently implemented, STEPparse must, in fact, parse an Express schema (with
Fed-X) before it can interpret the constructs in a STEP physical file. To do this.
STEPparse first invokes Fed-X's first two passes 1o build a dawa dicionary, and then
proceeds to parse its STEP source file.

4.2 Working Form Data Structures

The STEP Working Form consists of two data abstractions. The Instance abstraction
represents individual entity instances in a product model. as well as aggregates and un-
structured values (integers, booleans. etc.). A more object-onented design would viear-
ly break these down into several separate subclasses of Instance: implementation
considerations have resulted in a single module. The second abstraction represents a
complete product model. This basically consists of an ordered collection of Instances
and an Express model to give it a context. The Working Form current!v does not record
header information (as found in STEP physical files). although this would certainiv be
useful.

4.2.1 Instance

As mentioned above, the Instance abswaction is really the union of several other con-
ceptual classes, representing entity instances, simple-typed data (integer values, bool-
eans, etc.), and various kinds of aggregates. Most of the access functions for this
abstraction are restricted to act on Instances of centain classes, which indicates very
clearly the need for this module to be broken down into its component classes; this has
not been done, pnimarily because of limitations of the implementation language. C.

Certain attributes are common to all Instances. For example. each instance 1s marked
with a Type, which determines the context(s) in which it can be used. The Type also
provides an interpretation for the Instance's value. A userdata field is provided so that
an arbitrary C pointer can be associated with each Instance in an instantiated mode).
This allows a Working Form model to be linked to the internal data structures of a solid
modeler, for example.

The NIST Working Form for STEP Page *

€)

_

w

te

Stephets Sow tand Clark

Additionally, every Instance has a value field. The rype of this fleld vanes widely with
the tvpe of the Instance, but there are three pnmuary classes: simple tunsoruciured . v
ues, aggregates, and entity instances. Examples of Instances with simpie vaiues are
numbers, strings, and booleans These instinces each have asingle, stomic viiue of the
corresponding Ctype (tins, Tnacr™, elo s Anaggregate twhich may be an sy, bay.
list, or set) consists of a collecton of values, cach of which s el an Inwianve Thew
eiements can be accessed via indexing, with vahid indices ranging between jower and
upper bounds specified by the Express model. Note that these bounds are interpreied
differently for different classes ot aggregates in Express. The bounds directiy speaits
the range of allowable indices for an array, while thev himat the size of other spgregute
tvpes. Thus. indices tor list, bags, and sets range from O 10 the current size of the a3
gregate, which tn turn must fall between the upper and lower bounds. The Express lan-
guage also specifies type-specific operanions for each class ot aggregates, such as
intersection and union of sets and bags, and list concatenation. These operanons are
provided by the STEP WF as the preferred mode of interaction with aggregate Instunc
es. Anentity instance’s value again consists of a collecuon of Instances. These are ao
cessed by name. using the atmbute names from the entity's class.

Finally, an Instance may have a name. Normally, only external (non-embedded enti
ties will be named; all other Instances will have NU L7 names. This s due 1o the urage
prescribed by the STEP Physical File format: an embedded enuty cannot be referenced
outside of the immediate context in which 1t 1s defined, and so has no need for a name.
An exterral entity, on the other hand. can be referenced by any other entity in s product

model. This reference requires the entity 's name as a handle.

Product

The Product abstraction ties things together in the STEP Working Form. This module
is used to represent a STEP product model as a whole. A Product consists of a collec-
tion of (presumably interconnected) Instances and an Express conccptual schema o
give these Instances context. This schema serves as a data dictionary for the Product.
External entities in a Product can be looked up by name: other Instances can oniy be
retrieved by coming upon them as components of known Instances.

Externally, a Product looks like a somewhat intelligent container object. New Instances
can be added to this container, and existing Instances can be retmeved from it by name.
Additional functionality can be gained from the attached Express informaton model.

Missing Features

Current'y, the Working Form does not handle user-defined entities. STEPparse accepts
user-defined entities in a source file. and prints a warning message indicating that they
cannot be represented in the Working Form.

As mentioned above, file header information from PDES/STEP physical files is not re-
tained in the Working Form, although STEPparse silently accepts file headers.

The NIST Working Form for STEP Page 4

Stephen Now land ok

Aggregates with non-constant expressions as bounds are not handled properly. Such
an aggregate's type informanon accurately reflects the wue upper bound. but the STEP
WF routines reat the bound as if it were unspecitied. Since unbounded aggregates are
dynamically sized, this does not cause memory management problems: the only draw
back is that the Werking Form does not entorce size constraints on such aggregates

Comments are currently discarded dunng lexical analysis, and so currently have no
chance to be recorded by the parser. There has been some interestin developing &
mechanism through which applicanons which modify STEP physical files can presence
comments found in the input file.

6 Conclusion

The combination of the STEP Working Form with an Express Working Form dats dic-
tionary provides a flexible mechanism for performing varnous manipulations of STEP
data in a schema-independent manner. Although it remains 10 be seem how useful this
schema-independence will Le in higher-level end-user applicanions (e.g.. design editors,
configuration management systems, and process planning systems). the present arch-
tecture is quite useful for such genenc tasks as ranslation and database loading.

For further information on STEPparse, the STEP Working Form. or owner componerts
of the Toolkit, or 1o obtain a copy of the software, use the attached order form.

The NIST Working Form for STEP Page S

A References

[Altemueller88)

w

Stephen Nowiand Clark

Alternueller, J., The STEP File Swructure, 1ISO TCIS4/SCAWG
Document N279, September, 1988

[ANSIBY] American Nauonal Standards Insnitute. Programming Languaze €.
Document ANSI X3.159-1989

[Clark90a] Clark. 5. N., An Inmoduction 1o The NIST PDES Toolki. NISTIR
4336, National [nstitute of Standards and Technology. Gauthershurg.
MD, May 1990

{Clark90b] Clark, S.N., Fed-X; The NIST Express Translator, NISTIR 3371,
National Institute of Standards and Technology. Gaithersburz. MDD
August 1990

[Clark90c] Clark, S.N_, NIST STEP Working Form Programmer’'s Reterer o
NISTIR 4353, Nauonal Institute of Standards and Technologs .
Gaithersburg, MD, June 1990

{ClarkS0d] Clark, S.N., QDES User's Guide, NISTIR 4361, National Institute
of Standaras and Technology, Gaithersburg, MD. June 1990

{Nickerson90] Nickerson, D., The NIST SOL Database Loader: STEP Waorking
Form to SQL., NISTIR 4337, National Institute of Standards and
Technology, Gaithersburg, MD, May 1990

[Schenck90] Schenck, D., ed., Exchange of Product Model Data - Part 11 The
Express Language. ISO TC184/SC4 Document N64. July 1990}

[Smith8&] Smith, B., and G. Rinaudc*, eds., Product Data Exchange
Specification First Working Draft. NISTIR 88-4004, National
Institute of Standards and Technology. Gaithersburg, MD.
December 1988

The NIST Working Form for STEP Page &

ORDER and INFORMATION FORM

MAILTO: r-

Y\IA'\'ION/f\ﬂL__~ Nauona! Insutute of Standards and Technology
» ' Gahersburg MD., 20899

Mewrology Building, Rm-A127

" At Secretary Nauonal PDES Testbed

TESTBED — {3011 975-3508

O odtdaodoaoaodd

Please send the following documents
and/or software:

Clark, SN., An Introductign to The NIST PDES Toolkit

Clark, S.N., The NIST PDES Toolkit Tecnical Fyndamentals
Clark, S.N., Fed-X: The NIST Express Translator

Clark, S.N., The NIST Working Form for STEP

Clark, S.N., NIST Express Working Form Programmer's Reference
Clark, S.N., NIST STEP Working Form Programmer's Reference,
Clark, S.N., QDES User's Guide

Clark, S.N., QDES Administrative Guide

Moris, K.C., Trapslatng Express 10 SQL: A User’s Guide

Nickerson, D, The NIST SQL Database { oader: STEP Working Form 1o
SQL

Strouse, K., McLay, M., The PDES Testbed User Guide
OTHER (PLEASE SPECIFY) !

These documents and corresponding software will be
available from NTIS in the future. When available, the
NTIS ordering information will be forthcoming.

NIST

. ——fHIST-114A ’ g "U.S' DEPARTMENT OF COMMEF |[PUBLICATION OA REPORT My
(REV. 3-09) NATIONAL INSTITUTE OF STANDARDS AND TECHNOngs UNISTIR 4381 -

Wonﬁmmw k L] “juuul;rlv:
BIBLIOGRAPHIC DATA SHEET —

[3. PUBLICATION OATE
RECIBLR 19¢0

4. TITLE AND SUBTITLS

“"The NIST Working Form for STEP"

S. AUTHOA(S)

Stephen Nowland Clark

6. PERFORMING ORQANIZATION (iF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS) 7. CONTRACT/GRANT NUMBER

U.S. DEPARTMENT OF COMMERCE

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY '
QAJTHERSBURG, MD 20893 8. TYPE OF REPORT AND PERIOD COVERED

8. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, 2F)

10. SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, 1S ATTACHED.
11, ABSTRACY (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIONIFICANT INFORMATION, IF DOCUMENT INCLUDES A SIGNIFICANT 8I1BLUIOGRAPHY OF
UTERATURE SURVEY, MENTION IT HERE.)

The Product Data Exchange Specification (PDES) is an emerging standard for the exchange

of product information among various manufacturing applications. The neutral exchange
medium for PDES product models is the STEP physical file format. The National PDES Testbed
at NIST has developed software to manipulate and translate STEP models. This software
consists of an in-memory working form and an associated physical file parser, STEPparse.
The design and capabilities of STEPparse and of the STEP Working Form are discussed.

12. KEKY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITALIZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)
data modeling; product data exchange; PDES; PDES Implementation tools; schema-independent
software; STEP; STEP physical file

13. AVAILABILITY 14. NUMBER OF PRINTED PAGKS

X UNUMITRD 11
POR OFFICIAL DISTRIBUTION. DO NOT RELEASE YO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FAOM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFPFICE, 18. pRiCE
WASHINGTON, DC 20402, AC2
™o | ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFINLD, VA 22181,
ELECTRONIC FORM

